Javascript must be enabled

Adam Levine : Heegaard Floer Homology and Closed Exotic 4-Manifolds

We discuss new methods for using the Heegaard Floer homology of hypersurfaces to distinguish between smooth closed 4-manifolds that are homeomorphic but non-diffeomorphic. Specifically, for a 4-manifold X with b_1(X)=1, the minimum rank of the reduced Heegaard Floer homology of any embedded 3-manifold X representing a generator of H_1(X) gives a diffeomorphism invariant of X. We use this invariant to distinguish certain infinite families of exotic 4-manifolds that cannot be distinguished by previously known techniques. Using related ideas, we also provide the first known examples of (non-simply-connected) exotic 4-manifolds with negative definite intersection form. This is joint work with Tye Lidman and Lisa Piccirillo.

Please select playlist name from following

Report Video

Please select the category that most closely reflects your concern about the video, so that we can review it and determine whether it violates our Community Guidelines or isn’t appropriate for all viewers. Abusing this feature is also a violation of the Community Guidelines, so don’t do it.


Comments Disabled For This Video