Gitta Kutyniok : Frames and Sparsity (Mar 3, 2011 4:25 PM)
Frames are nowadays a standard methodology in applied mathematics, computer science, and engineering when redundant, yet stable expansions are required. Sparsity is a new paradigm in signal processing, which allows for significantly reduced measurements yet still highly accurate reconstruction. In this talk, we will focus on the main two links between these exciting, rapidly growing areas. Firstly, the redundancy of a frame promotes sparse expansions of signals, thereby strongly supporting sparse recovery methods such as Compressed Sensing. After providing an overview of sparsity methodologies, we will discuss new results on sparse recovery for structured signals, in particular, which are a composition of `distinct' components. Secondly, in very high dimensions, frame decompositions might be intractable in applications with limited computing budget. This problem can be addressed by requiring sparsity of the frame itself, and we will show how to derive optimally sparse frames. Finally, we will discuss how some of the presented results generalize to the novel notion of fusion frames, which was introduced a few years ago for modeling distributed processing applications.
- Category: Applied Math and Analysis
- Duration: 01:34:55
- Date: March 3, 2011 at 4:25 PM
- Views: 131
- Tags: seminar, Applied Math And Analysis Seminar
0 Comments