Javascript must be enabled

Jun Kitagawa : A convergent Newton algorithm for semi-discrete optimal transport

The optimal transport (Monge-Kantorovich) problem is a variational problem involving transportation of mass subject to minimizing some kind of energy, and it arises in connection with many parts of math, both pure and applied. In this talk, I will discuss a numerical algorithm to approximate solutions in the semi-discrete case. We propose a damped Newton algorithm which exploits the structure of the associated dual problem, and using geometric implications of the regularity theory of Monge-Amp{\`e}re equations, we are able to rigorously prove global linear convergence and local superlinear convergence of the algorithm. This talk is based on joint work with Quentin M{\’e}rigot and Boris Thibert.

Please select playlist name from following

Report Video

Please select the category that most closely reflects your concern about the video, so that we can review it and determine whether it violates our Community Guidelines or isn’t appropriate for all viewers. Abusing this feature is also a violation of the Community Guidelines, so don’t do it.


Comments Disabled For This Video