Quicklists
Javascript must be enabled

William Chen : Arithmetic monodromy actions on the pro-metabelian fundamental group of punctured elliptic curves (Feb 21, 2018 3:10 PM)

For a finite 2-generated group G, one can consider the moduli of elliptic curves equipped with G-structures, which is roughly a G-Galois cover of the elliptic curve, unramified away from the origin. The resulting moduli spaces are quotients of the upper half plane by possibly noncongruence subgroups of SL(2,Z). When G is abelian, it is easy to see that such level structures are equivalent to classical congruence level structures, but in general it is difficult to classify the groups G which yield congruence level structures. In this talk I will focus on a recent joint result with Pierre Deligne, where we show that for any metabelian G, G-structures are congruence in an arithmetic sense. We do this by studying the monodromy action of the fundamental group of the moduli stack of elliptic curves (over Q) on the pro-metabelian fundamental group of a punctured elliptic curve.

Please select playlist name from following

Report Video

Please select the category that most closely reflects your concern about the video, so that we can review it and determine whether it violates our Community Guidelines or isn’t appropriate for all viewers. Abusing this feature is also a violation of the Community Guidelines, so don’t do it.

0 Comments

Comments Disabled For This Video