Javascript must be enabled

Chung Pang Mok : Introduction to Mochizukis works on inter-universal Teichmuller theory



Inter-universal Teichmuller theory, as developed by Mochizuki in the past decade, is an analogue for number fields of the classical Teichmuller theory, and also of the p-adic Teichmuller theory of Mochizuki. In this theory, the ring structure of a number field is subject to non-ring theoretic deformation. Absolute anabelian geometry, a refinement of anabelian geometry, plays a crucial role in inter-universal Teichmuller theory. In this talk, we will try to give an introduction to these ideas.

Please select playlist name from following

Report Video

Please select the category that most closely reflects your concern about the video, so that we can review it and determine whether it violates our Community Guidelines or isn’t appropriate for all viewers. Abusing this feature is also a violation of the Community Guidelines, so don’t do it.


Comments Disabled For This Video