Quicklists
Javascript must be enabled

David Geraghty : Modularity lifting beyond the numerical coincidence of Taylor and Wiles

Modularity lifting theorems were introduced by Taylor and Wiles and formed a key part of the proof of Fermat's Last Theorem. Their method has been generalized successfully by a number authors but always with the restriction that the Galois representations in question have regular weight. Moreover, the sought after automorphic representation must come from a group that admits Shimura varieties. I will describe a method to overcome these restrictions, conditional on certain conjectures which themselves can be established in a number of cases. This is joint with Frank Calegari.

Please select playlist name from following

Report Video

Please select the category that most closely reflects your concern about the video, so that we can review it and determine whether it violates our Community Guidelines or isn’t appropriate for all viewers. Abusing this feature is also a violation of the Community Guidelines, so don’t do it.

0 Comments

Comments Disabled For This Video