Quicklists
Javascript must be enabled

Fédéric Rochon : On the uniqueness of certain families of holomorphic disks

A Zoll metric is a metric whose geodesics are all circles of equal length. In this talk, we will first review the definition of the twistor correspondence of LeBrun and Mason for Zoll metrics on the sphere $S^{2}$. It associates to a Zoll metric on $S^{2}$ a family of holomorphic disks in $CP_{2}$ with boundary in a totally real submanifold $P\subset CP_{2}$. For a fixed $P\subset CP_{2}$, we will indicate how one can show that such a family is unique whenever it exists, implying that the twistor correspondence of LeBrun and Mason is in some sense injective. One of the key ingredients in the proof will be the blow-up and blow-down constructions in the sense of Melrose.

Please select playlist name from following

Report Video

Please select the category that most closely reflects your concern about the video, so that we can review it and determine whether it violates our Community Guidelines or isn’t appropriate for all viewers. Abusing this feature is also a violation of the Community Guidelines, so don’t do it.

0 Comments

Comments Disabled For This Video