Quicklists
Javascript must be enabled

Robert Bryant : The affine Bonnet problem (Sep 10, 2013 4:25 PM)

The classical Euclidean problem studied by Bonnet in the 19th century was to determine whether, and in how many ways, a Riemannian surface can be isometrically embedded into Euclidean 3-space so that its mean curvature is a prescribed function. He found that, generically, specifying a metric and mean curvature admitted no solution but that there are special cases in which, not only are there solutions, but there are even 1-parameter families of distinct (i.e., mutually noncongruent) solutions. Much later, these ‘Bonnet surfaces’ were found to be intimately connected with integrable systems and Lax pairs. In this talk, I will consider the analogous problem in affine geometry: To determine whether, and in how many ways, a surface endowed with a Riemannian metric g and a function H can be immersed into affine 3-space in such a way that the induced Blaschke metric is g and the induced affine mean curvature is H. This affine problem is, in many ways, richer and more interesting than the corresponding Euclidean problem. I will classify the pairs (g,H) that display the greatest flexibility in their solution space and explain what is known about the (suspected) links with integrable systems and Lax pairs.

Please select playlist name from following

Report Video

Please select the category that most closely reflects your concern about the video, so that we can review it and determine whether it violates our Community Guidelines or isn’t appropriate for all viewers. Abusing this feature is also a violation of the Community Guidelines, so don’t do it.

0 Comments

Comments Disabled For This Video