Javascript must be enabled

Max Morris : Design and Analysis for an Inverse Problem Arising From an Advection-Dispersion Process

We consider a process of one-dimensional fluid flow through a soil packed tube in which a contaminant is initially distributed. The contaminant concentration, as a function of location in the tube and time after flushing begins, is classically modeled as the solution of a linear second order partial differential equation. Here, we consider the related issues of how contaminant concentration measured at some location-time combinations can be used to approximate concentration at other locations and times (ie., exprimental design). The method is demonstrated for the case in which initial concentrations are approximated based on data collected only at the downstream end of the tube. Finally, the effect of misspecifying one of the model parameters is discussed, and alternative designs are developed for instances in which that parameter must be estimated from the data.

Please select playlist name from following

Report Video

Please select the category that most closely reflects your concern about the video, so that we can review it and determine whether it violates our Community Guidelines or isn’t appropriate for all viewers. Abusing this feature is also a violation of the Community Guidelines, so don’t do it.


Comments Disabled For This Video