Quicklists
Javascript must be enabled

Carl Mueller : Nonuniqueness for some stochastic PDE

The superprocess or Dawson-Watanabe process is one of the most intensively studied stochastic processes of the last quarter century. It arises as a limit of population processes, and includes information about the physical location of individuals. Usually the superprocess is measure valued, but In one dimension it has a density that satisfies a parabolic stochastic PDE. For a long time uniqueness for this equation was unknown. In joint work with Barlow, Mytnik, and Perkins, we show that nonuniquess holds for the superprocess equation and several related equations.

Please select playlist name from following

Report Video

Please select the category that most closely reflects your concern about the video, so that we can review it and determine whether it violates our Community Guidelines or isn’t appropriate for all viewers. Abusing this feature is also a violation of the Community Guidelines, so don’t do it.

0 Comments

Comments Disabled For This Video