Quicklists
Javascript must be enabled

Theo McKenzie : Eigenvalue rigidity for random regular graphs

Random regular graphs form a ubiquitous model for chaotic systems. However, the spectral properties of their adjacency matrices have proven difficult to analyze because of the strong dependence between different entries. In this talk, I will describe recent work that shows that despite this, the fluctuation of eigenvalues of the adjacency matrix are of the same order as for Gaussian matrices. This gives an optimal error term for Friedman's theorem that the second eigenvalue of the adjacency matrix of a random regular graph converges to the spectral radius of an infinite regular tree. Crucial is tight analysis of the Greenâ??s function of the adjacency operator and an analysis of the change of the Green's function after a random edge switch. This is based on joint work with Jiaoyang Huang and Horng-Tzer Yau.

Please select playlist name from following

Report Video

Please select the category that most closely reflects your concern about the video, so that we can review it and determine whether it violates our Community Guidelines or isn’t appropriate for all viewers. Abusing this feature is also a violation of the Community Guidelines, so don’t do it.

0 Comments

Comments Disabled For This Video