Quicklists
Javascript must be enabled

Yiannis Sakellaridis : Moment map and orbital integrals

In the Langlands program, it is essential to understand spaces of Schwartz measures on quotient stacks like the (twisted) adjoint quotient of a reductive group. The generalization of this problem to spherical varieties calls for an understanding of the double quotient H\G/H, where H is a spherical subgroup of G. This has been studied by Richardson for symmetric spaces. In this talk, I will present a new approach, for spherical varieties "of rank one", based on Friedrich Knop's theory of the moment map and the invariant collective motion.

Please select playlist name from following

Report Video

Please select the category that most closely reflects your concern about the video, so that we can review it and determine whether it violates our Community Guidelines or isn’t appropriate for all viewers. Abusing this feature is also a violation of the Community Guidelines, so don’t do it.

0 Comments

Comments Disabled For This Video