Quicklists
Javascript must be enabled

Vlad Vicol : On the Inviscid Limit of the Navier-Stokes Equations with Dirichlet Boundary Conditions

We consider the vanishing viscosity limit of the Navier-Stokes equations in a half space, with Dirichlet boundary conditions. We prove that the inviscid limit holds in the energy norm if the Navier-Stokes solutions remain bounded in $L^2_t L^\infty_x$ independently of the kinematic viscosity, and if they are equicontinuous at $x_2 = 0$. These conditions imply that there is no boundary layer separation: the Lagrangian paths originating in a boundary layer, stay in a proportional boundary layer during the time interval considered. We then give a proof of the (numerical) conjecture of vanDommelen and Shen (1980) which predicts the finite time blowup of the displacement thickness in the Prandtl boundary layer equations. This shows that the Prandtl layer exhibits separation in finite time.

Please select playlist name from following

Report Video

Please select the category that most closely reflects your concern about the video, so that we can review it and determine whether it violates our Community Guidelines or isn’t appropriate for all viewers. Abusing this feature is also a violation of the Community Guidelines, so don’t do it.

0 Comments

Comments Disabled For This Video