Sylvie Méléard : Stochastic dynamics of adaptive trait and neutral marker driven by eco-evolutionary feedbacks (Oct 30, 2013 11:55 AM)
This talk presents a work in progress with Sylvain Billard, Regis Ferriere and Chi Viet Tran. How the neutral diversity is affected by selection and adaptation is investigated in an eco-evolutionary framework. In our model, we study a finite population in continuous time, where each individual is characterized by a trait under selection and a completely linked neutral marker. The dynamics is ruled by births and deaths, mutations at birth and competition between individuals. The ecological phenomena depend only on the trait values but we expect that these effects influence the generation and maintenance of neutral variation. Considering a large population limit with rare mutations, but where the marker mutates faster than the trait, we prove the convergence of our stochastic individual-based process to a new measure-valued diffusive process with jumps that we call Substitution Fleming-Viot Process. This process restricted to the trait space is the Trait Substitution Sequence introduced by Metz et al. (1996). During the invasion of a favorable mutation, the marker associated with this favorable mutant is hitchhiked, creating a genetical bottleneck. The hitchhiking effect and how the neutral diversity is restored afterwards are studied. We show that the marker distribution is approximated by a Fleming-Viot distribution between two trait substitutions and that time-scale separation phenomena occur. The SFVP has important and relevant implications that are discussed and illustrated by simulations. We especially show that after a selective sweep, the neutral diversity restoration depend on mutations, ecological parameters and trait values.
- Category: Mathematical Biology
- Duration: 01:14:56
- Date: October 30, 2013 at 11:55 AM
- Views: 115
- Tags: seminar, Mathematical Biology Seminar
0 Comments