Javascript must be enabled

Wenjun Ying : A Kernel-free Boundary Integral Method for Variable Coefficient Elliptic PDE



In this talk, I will present a kernel-free boundary integral (KFBI) method for the variable coefficient elliptic partial differential equation on complex domains. The KFBI method is a generalization of the standard boundary integral method. But, unlike the standard boundary integral method, the KFBI method does not need to know an analytical expression for the kernel of the boundary integral operator or the Green's function associated with the elliptic PDE. So it is not limited to the constant-coefficient PDEs. The KFBI method solves the discrete integral equations by an iterative method, in which only part of the matrix vector multiplication involves the discretization of the boundary integral. With the KFBI method, the evaluation of the boundary integral is replaced by interpolation from a structured grid based solution to an equivalent interface problem, which is solved quickly by a Fourier transform or geometric multigrid based fast elliptic solver. Numerical examples for Dirichlet and Neumann BVPs, interface problems with different conductivity constants and the Poisson-Boltzmann equations will be presented.

Please select playlist name from following

Report Video

Please select the category that most closely reflects your concern about the video, so that we can review it and determine whether it violates our Community Guidelines or isn’t appropriate for all viewers. Abusing this feature is also a violation of the Community Guidelines, so don’t do it.


Comments Disabled For This Video