Dean Bottino : Evaluating Strategies for Overcoming Rituximab (R) Resistance Using a Quantitative Systems Pharmacology (QSP) model of Antibody-Dependent Cell-mediated Cytotoxicity & Phagocytosis (ADCC & ADCP): An Academic/Industrial Collaboration
Despite the impressive performance of rituximab (R) containing regimens like R-CHOP in CD20+ Non-Hodgkinâ??s Lymphoma (NHL), 30-60% of R-naïve NHL patients are estimated to be resistant, and approximately 60% of those patients will not respond to subsequent single agent R treatment. Given that antibody dependent cell mediated cytotoxicity (ADCC) and phagocytosis (ADCP) are thought to be the major mechanisms of action of Rituximab, increasing the activation levels of natural killer (NK) and macrophage (MP) cells may be one strategy for overcoming R resistance.
During (and after) the Fields Institute Industrial Problem Solving Workshop in August 2019, academic participants and industry mentors developed and calibrated to literature data a quantitative systems pharmacology (QSP) model of ADCC/ADCP to interrogate which mechanisms of R resistance could be overcome by increased NK or MP activation, and how much effector cell activation would be required to overcome a given degree and mechanism of R resistance.
This work was motivated by a real-world pharmaceutical drug development question, and the academic-industry interactions during and after the workshop resulted in sharknado plots as well as a published QSP model (presented at American Association of Cancer Research Annual Meeting, 2021) that was able to address some of the key questions around overcoming R resistance. The published model was then incorporated into an in-house QSP model supporting the development of a Takeda investigational drug which is being developed to restore R sensitivity in an R-resistant patient population.
- Category: Mathematical Biology
- Duration: 53:20
- Date: February 9, 2024 at 11:55 AM
- Views: 76
- Tags: seminar, Mathematical Biology Seminar
0 Comments