Quicklists
Javascript must be enabled

Alexander Cloninger : Incorporation of geometry into learning algorithms and medicine

root

88 Views

This talk focuses on two instances in which scientific fields outside mathematics benefit from incorporating the geometry of the data. In each instance, the application area motivates the need for new mathematical approaches and algorithms and leads to interesting new questions. (1) A method to determine and predict drug treatment effectiveness for patients based off their baseline information. This motivates building a function adapted diffusion operator on high-dimensional data X when the function F can only be evaluated on large subsets of X, and defining a localized filtration of F and estimation values of F at a finer scale than it is reliable naively. (2) The current empirical success of deep learning in imaging and medical applications, in which theory and understanding is lagging far behind. By assuming the data lie near low-dimensional manifolds and building local wavelet frames, we improve on existing theory that breaks down when the ambient dimension is large (the regime in which deep learning has seen the most success).

Please select playlist name from following

Report Video

Please select the category that most closely reflects your concern about the video, so that we can review it and determine whether it violates our Community Guidelines or isn’t appropriate for all viewers. Abusing this feature is also a violation of the Community Guidelines, so don’t do it.

0 Comments

Comments Disabled For This Video