Javascript must be enabled

Joseph Spivey : A How-To Guide to Building Your Very Own Moduli Spaces (they make such great gifts)

I'll be talking about how to construct the moduli space for genus g Riemann surfaces with r boundary components. I'll draw lots of pictures and focus a lot of attention on genus 1 Riemann surfaces with 1 boundary component. As an application, I'll probably talk about H^1(SL2(Z)) with coefficients in various representations--and the correspondence to modular forms (briefly, and without a whole lot of proofs).

Please select playlist name from following

Report Video

Please select the category that most closely reflects your concern about the video, so that we can review it and determine whether it violates our Community Guidelines or isn’t appropriate for all viewers. Abusing this feature is also a violation of the Community Guidelines, so don’t do it.


Comments Disabled For This Video