Quicklists
Javascript must be enabled

Eyal Lubetzky : Mixing times of critical Potts models (Mar 2, 2017 3:10 PM)

We will discuss recent progress, jointly with R. Gheissari, on the dynamical phase transition for the critical q-state Potts model on the 2D torus (both single-site dynamics such as Glauber/Metropolis and cluster dynamics such as Swendsen--Wang), where the conjectured behavior was a mixing time that is polynomial in the side-length for $q = 2,3,4$ colors but exponential in it for $q>4$. We will then present a proof from a recent work with R. Gheissari and Y. Peres, that, on the complete graph on $n$ vertices with $q>2$ colors, the Swendsen--Wang dynamics is exponentially slow in $n$, improving on the lower bound of $\exp(c\sqrt{n})$ due to Gore and Jerrum in 1999. If time permits, we will then revisit the model on the 2D lattice, and describe the effect of different boundary conditions on its dynamical behavior at criticality.

Please select playlist name from following

Report Video

Please select the category that most closely reflects your concern about the video, so that we can review it and determine whether it violates our Community Guidelines or isn’t appropriate for all viewers. Abusing this feature is also a violation of the Community Guidelines, so don’t do it.

0 Comments

Comments Disabled For This Video