Quicklists
Javascript must be enabled

Amanda Randles : Massively Parallel Models of Hemodynamics in the Human Circulatory System

The potential impact of blood flow simulations on the diagnosis and treatment of patients suffering from vascular disease is tremendous. Empowering models of the full arterial tree can provide insight into diseases such as arterial hypertension and enables the study of the influence of local factors on global hemodynamics. We present a new, highly scalable implementation of the Lattice Boltzmann method which addresses key challenges such as multiscale coupling, limited memory capacity and bandwidth, and robust load balancing in complex geometries. We demonstrate the strong scaling of a three-dimensional, high-resolution simulation of hemodynamics in the systemic arterial tree on 1,572,864 cores of Blue Gene/Q. Faster calculation of flow in full arterial networks enables unprecedented risk stratification on a per-patient basis. In pursuit of this goal, we have introduced computational advances that significantly reduce time-to-solution for biofluidic simulations. In this talk, I will discuss the development of HARVEY, a parallel fluid dynamics application designed to model hemodynamics in patient-specific geometries. I will cover the methods introduced to reduce the overall time-to-solution and enable near-linear strong scaling on the IBM Blue Gene/Q supercomputer. Finally, I will present the expansion of the scope of projects to address not only vascular diseases, but also treatment planning and the movement of circulating tumor cells in the bloodstream.

Please select playlist name from following

Report Video

Please select the category that most closely reflects your concern about the video, so that we can review it and determine whether it violates our Community Guidelines or isn’t appropriate for all viewers. Abusing this feature is also a violation of the Community Guidelines, so don’t do it.

0 Comments

Comments Disabled For This Video