Quicklists
Javascript must be enabled

Shahar Kovalsky : Shape Matching and Mapping using Semidefinite Programming (Dec 7, 2015 11:55 AM)

Geometric problems - such as finding corresponding points over a collection of shapes, or computing shape deformation under geometric constraints - pose various computational challenges. I will show that despite the very different nature of these two highly non-convex problems, Semidefinite Programming (SDP) can be leveraged to provide a tight convex approximation in both cases. A different approach is used for each problem, demonstrating the versatility of SDP: (i) For establishing point correspondences between shapes, we devise an SDP relaxation. I will show it is a hybrid of the popular spectral and doubly-stochastic relaxations, and is in fact tighter than both. (ii) For the computation of piecewise-linear mappings, we introduce a family of maximal SDP restrictions. Solving a sequence of such SDPs enables the optimization of functionals and constraints expressed in terms of singular values, which naturally model various geometry processing problems.

Please select playlist name from following

Report Video

Please select the category that most closely reflects your concern about the video, so that we can review it and determine whether it violates our Community Guidelines or isn’t appropriate for all viewers. Abusing this feature is also a violation of the Community Guidelines, so don’t do it.

0 Comments

Comments Disabled For This Video