Quicklists
Javascript must be enabled

Jer-Chin Chuang : Subdivisions and Transgressive Chains

Combinatorial transgressions are secondary invariants of a space admitting triangulations. They arise from subdivisions and are analogous to transgressive forms such as those in Chern-Weil theory. In this talk, I characterize transgressions that are path-independent of subdivision sequence. The result is obtained by using a cohomology on posets that is shown to be equivalent to higher derived functors of the inverse (or projective) limit over the opposite poset.

Please select playlist name from following

Report Video

Please select the category that most closely reflects your concern about the video, so that we can review it and determine whether it violates our Community Guidelines or isn’t appropriate for all viewers. Abusing this feature is also a violation of the Community Guidelines, so don’t do it.

0 Comments

Comments Disabled For This Video