Quicklists
Javascript must be enabled

Manon Michel : Non-reversible Markov processes in particle systems

Recently, Markov-chain Monte Carlo methods based on non-reversible piecewise deterministic Markov processes (PDMP) are under growing attention, thanks to the increase in performance they usually bring. Beyond their numerical efficacy, the non-reversible and piecewise deterministic characteristics of these processes prompt interesting questions, regarding for instance ergodicity proof and convergence bounds. During this talk, I will particularly focus on the obtained results and open problems left while considering PDMP evolution of particle systems, both in an equilibrium and out-of-equilibrium setting. Hardcore particle systems have embodied a testbed of choice since the first implementations of Markov chain Monte Carlo in the 50â??s. Even today, the entropic barriers they exhibit are still resisting to the state-of-the-art MCMC sampling methods. During this talk, I will review the recent developments regarding sampling such systems and discuss the dynamical bottlenecks that are yet to be solved.

Please select playlist name from following

Report Video

Please select the category that most closely reflects your concern about the video, so that we can review it and determine whether it violates our Community Guidelines or isn’t appropriate for all viewers. Abusing this feature is also a violation of the Community Guidelines, so don’t do it.

0 Comments

Comments Disabled For This Video