Quicklists
Javascript must be enabled

Karl Glasner : Dissipative fluid systems and gradient flows

This talk describes the the gradient flow nature of dissipative fluid interface problems. Intuitively, the gradient of a functional is given by the direction of ``steepest descent''. This notion, however, depends on the geometry assigned to the underlying function space. The task is therefore to find a metric appropriate for the given dynamics.

For the problem of surface tension driven Hele-shaw flow, the correct metric turns out to have a remarkable connection to an optimal transport problem. This connection points the way to a diffuse interface description of Hele-Shaw flow, given by a degenerate Cahn-Hilliard equation. Some computational examples of this model will be given. The problem of viscous sintering, the Stokes flow counterpart to the Hele-Shaw problem, will also be discussed.

Please select playlist name from following

Report Video

Please select the category that most closely reflects your concern about the video, so that we can review it and determine whether it violates our Community Guidelines or isn’t appropriate for all viewers. Abusing this feature is also a violation of the Community Guidelines, so don’t do it.

0 Comments

Comments Disabled For This Video