Quicklists
Javascript must be enabled

Mike Lipnowski : Statistics of abelian varieties over finite fields

Joint work with Jacob Tsimerman. Let B(g,p) denote the number of isomorphism classes of g-dimensional abelian varieties over the finite field of size p. Let A(g,p) denote the number of isomorphism classes of principally polarized g dimensional abelian varieties over the finite field of size p. We derive upper bounds for B(g,p) and lower bounds for A(g,p) for p fixed and g increasing. The extremely large gap between the lower bound for A(g,p) and the upper bound B(g,p) implies some statistically counterintuitive behavior for abelian varieties of large dimension over a fixed finite field.

Please select playlist name from following

Report Video

Please select the category that most closely reflects your concern about the video, so that we can review it and determine whether it violates our Community Guidelines or isn’t appropriate for all viewers. Abusing this feature is also a violation of the Community Guidelines, so don’t do it.

0 Comments

Comments Disabled For This Video