Quicklists
Javascript must be enabled

Ken Ono : Zeta polynomials for modular forms

root

78 Views

The speaker will discuss recent work on Manin's theory of zeta polynomials for modular forms. He will describe recent results which confirm Manin's speculation that there is such a theory which arises from periods of newforms. More precisely, for each even weight k>2 newform f, the speaker will describe a canonical polynomial Zf(s) which satisfies a functional equation of the form Zf(s)=Zf(1−s), and also satisfies the Riemann Hypothesis: if Zf(ρ)=0, then Re(ρ)=1/2. This zeta function is arithmetic in nature in that it encodes the moments of the critical values of L(f,s). This work builds on earlier results of many people on period polynomials of modular forms. This is joint work with Seokho Jin, Wenjun Ma, Larry Rolen, Kannan Soundararajan, and Florian Sprung.

Please select playlist name from following

Report Video

Please select the category that most closely reflects your concern about the video, so that we can review it and determine whether it violates our Community Guidelines or isn’t appropriate for all viewers. Abusing this feature is also a violation of the Community Guidelines, so don’t do it.

0 Comments

Comments Disabled For This Video