Javascript must be enabled

Katherine Newhall : Synchrony in Stochastic Pulse-coupled Neuronal Network Models

Many pulse-coupled dynamical systems possess synchronous attracting states. Even stochastically driven model networks of Integrate and Fire neurons demonstrate synchrony over a large range of parameters. We study the interplay between fluctuations which de-synchronize and synaptic coupling along the network connections that synchronize the network by calculating the probability to see repeated cascading total firing events, during which all the neurons in the network fire at once. Using this characterization of synchrony we investigate the significance of the local network topology and of more physiological additions to the model on the model neuronal networks ability to synchronize. The mean time between total firing events characterizes the perfectly synchronous state, and we compute this from a first-passage time problem in terms of a Fokker-Planck equation for a single neuron.

Please select playlist name from following

Report Video

Please select the category that most closely reflects your concern about the video, so that we can review it and determine whether it violates our Community Guidelines or isn’t appropriate for all viewers. Abusing this feature is also a violation of the Community Guidelines, so don’t do it.


Comments Disabled For This Video