Quicklists
Javascript must be enabled

Douglas LaFountain : Deligne-Mumford and the space of filtered screens (Nov 15, 2011 4:25 PM)

For a genus g surface with s > 0 punctures and 2g+s > 2, decorated Teichmuller space (DTeich) is a trivial R_+^s-bundle over the usual Teichmuller space, where the fiber corresponds to families of horocycles peripheral to each puncture. As proved by R. Penner, DTeich admits a mapping class group-invariant cell decomposition, which then descends to a cell decomposition of Riemann's moduli space. In this talk we introduce a new cellular bordification of DTeich which is also MCG-invariant, namely the space of filtered screens. After an appropriate quotient, we obtain a cell decomposition for a new compactification of moduli space, which is shown to be homotopy equivalent to the Deligne-Mumford compactification. This work is joint with R. Penner.

Please select playlist name from following

Report Video

Please select the category that most closely reflects your concern about the video, so that we can review it and determine whether it violates our Community Guidelines or isn’t appropriate for all viewers. Abusing this feature is also a violation of the Community Guidelines, so don’t do it.

0 Comments

Comments Disabled For This Video