Quicklists
Javascript must be enabled

Holden Lee : Recovering sparse Fourier signals, with application to system identification

ydai39

667 Views

The problem of recovering a sparse Fourier signal from samples comes up in signal processing, imaging, NMR spectroscopy, and machine learning. Two major challenges involve dealing with off-grid frequencies, and dealing with signals lacking separation between frequencies. Without a minimum separation condition, the problem of frequency recovery is exponentially ill-conditioned, but the signal can still be efficiently recovered in an "improper" manner using an appropriate filter. I will explain such an algorithm for sparse Fourier recovery, and the theory behind why it works - involving some clever analytic inequalities for Fourier-sparse signals. Finally, I will discuss recent work with Xue Chen on applying these ideas to system identification. Identification of a linear dynamical system from partial observations is a fundamental problem in control theory. A natural question is how to do so with statistical rates depending on the inherent dimensionality (or order) of the system, akin to the sparsity of a signal. We solve this question by casting system identification as a "multi-scale" sparse Fourier recovery problem.

Please select playlist name from following

Report Video

Please select the category that most closely reflects your concern about the video, so that we can review it and determine whether it violates our Community Guidelines or isn’t appropriate for all viewers. Abusing this feature is also a violation of the Community Guidelines, so don’t do it.

0 Comments

Please login to comment