Javascript must be enabled

Joceline Lega : Molecular dynamics simulations of live particles

I will show results of molecular dynamics simulations of hard disks with non-classical collision rules. In particular, I will focus on how local interactions at the microscopic level between these particles can lead to large-scale coherent dynamics at the mesoscopic level.

This work is inspired by collective behaviors, in the form of vortices and jets, recently observed in bacterial colonies. I will start with a brief summary of basic experimental facts and review a hydrodynamic model developed in collaboration with Thierry Passot (Observatoire de la Cote d'Azur, Nice, France). I will then motivate the need for a complementary approach that includes microscopic considerations, and describe the principal computational issues that arise in molecular dynamics simulations, as well as the standard ways to address them. Finally, I will discuss how classical collision rules that conserve energy and momentum may be modified to describe ensembles of live particles, and will show results of numerical simulations in which such rules have been implemented. Randomness, included in the form of random reorientation of the direction of motion of the particles, plays an important role in the type of collective behaviors that are observed.

Please select playlist name from following

Report Video

Please select the category that most closely reflects your concern about the video, so that we can review it and determine whether it violates our Community Guidelines or isn’t appropriate for all viewers. Abusing this feature is also a violation of the Community Guidelines, so don’t do it.


Comments Disabled For This Video