Quicklists
Javascript must be enabled

Shankar Bhamidi : Scaling limits of random graph models at criticality: Universality and the basin of attraction of the Erd\H{o}s-R\enyi random graph

Over the last few years a wide array of random graph models have been postulated to understand properties of empirically observed networks. Most of these models come with a parameter t (usually related to edge density) and a (model dependent) critical time t_c which specifies when a giant component emerges. There is evidence to support that for a wide class of models, under moment conditions, the nature of this emergence is universal and looks like the classical Erdos-Renyi random graph, in the sense of the critical scaling window and (a) the sizes of the components in this window (all maximal component sizes scaling like n^{2/3}) and (b) the structure of components (rescaled by n^{-1/3}) converge to random fractals related to the continuum random tree. Till date, (a) has been proven for a number of models using different techniques while (b) has been proven for only two models, the classical \erdos random graph and the rank-1 inhomogeneous random graph. The aim of this paper is to develop a general program for proving such results. The program requires three main ingredients: (i) in the critical scaling window, components merge approximately like the multiplicative coalescent (ii) scaling exponents of susceptibility functions in the barely subcritical regime are the same as the Erdos-Renyi random graph and (iii) macroscopic averaging of expected distances between random points in the same component in the barely subcritical regime. We show that these apply to a number of fundamental random graph models including the configuration model, inhomogeneous random graphs modulated via a finite kernel and bounded size rules. Thus these models all belong to the domain of attraction of the classical Erdos-Renyi random graph. As a by product we also get the first known results for component sizes at criticality for a general class of inhomogeneous random graphs. This is joint work with Xuan Wang, Sanchayan Sen and Nicolas Broutin.

Please select playlist name from following

Report Video

Please select the category that most closely reflects your concern about the video, so that we can review it and determine whether it violates our Community Guidelines or isn’t appropriate for all viewers. Abusing this feature is also a violation of the Community Guidelines, so don’t do it.

0 Comments

Comments Disabled For This Video