Javascript must be enabled

Jeff Achter : Divisibility of the number of points on Jacobians

Given an elliptic curve over a finite field, one might reasonably ask for the chance that it has a rational point of order $\ell$. More generally, what is the chance that a curve drawn from a family over a finite field has a point of order $\ell$ on its Jacobian? The answer is encoded in an $\ell$-adic representation associated to the family in question. In this talk, I'll answer this question for hyper- or trielliptic curves, and give some results concerning an arbitrary family of curves. ** Keeping in mind what you said about the audience, I'll focus on the geometric and topological ideas.

Please select playlist name from following

Report Video

Please select the category that most closely reflects your concern about the video, so that we can review it and determine whether it violates our Community Guidelines or isn’t appropriate for all viewers. Abusing this feature is also a violation of the Community Guidelines, so don’t do it.


Comments Disabled For This Video