Quicklists
Javascript must be enabled

Samit Dasgupta : Starks Conjectures and Hilberts 12th Problem (Jan 17, 2018 11:55 AM)

In this talk we will discuss two central problems in algebraic number theory and their interconnections: explicit class field theory (also known as Hilbert's 12th Problem), and the special values of L-functions. The goal of explicit class field theory is to describe the abelian extensions of a ground number field via analytic means intrinsic to the ground field. Meanwhile, there is an abundance of conjectures on the special values of L-functions at certain integer points. Of these, Stark's Conjecture has special relevance toward explicit class field theory. I will describe my recent proof of the Gross-Stark conjecture, a p-adic version of Stark's Conjecture that relates the leading term of the Deligne-Ribet p-adic L-function to a determinant of p-adic logarithms of p-units in abelian extensions. Next I will state my refinement of the Gross-Stark conjecture that gives an exact formula for Gross-Stark units. I will conclude with a description of work in progress that aims to prove this conjecture and thereby give a p-adic solution to Hilbert's 12th problem.

Please select playlist name from following

Report Video

Please select the category that most closely reflects your concern about the video, so that we can review it and determine whether it violates our Community Guidelines or isn’t appropriate for all viewers. Abusing this feature is also a violation of the Community Guidelines, so don’t do it.

0 Comments

Comments Disabled For This Video