Chen-Yun Lin : An embedding theorem: differential geometry behind massive data analysis
High-dimensional data can be difficult to analyze. Assume data are distributed on a low-dimensional manifold. The Vector Diffusion Mapping (VDM), introduced by Singer-Wu, is a non-linear dimension reduction technique and is shown robust to noise. It has applications in cryo-electron microscopy and image denoising and has potential application in time-frequency analysis. In this talk, I will present a theoretical analysis of the effectiveness of the VDM. Specifically, I will discuss parametrisation of the manifold and an embedding which is equivalent to the truncated VDM. In the differential geometry language, I use eigen-vector fields of the connection Laplacian operator to construct local coordinate charts that depend only on geometric properties of the manifold. Next, I use the coordinate charts to embed the entire manifold into a finite-dimensional Euclidean space. The proof of the results relies on solving the elliptic system and provide estimates for eigenvector fields and the heat kernel and their gradients.
- Category: Geometry and Topology
- Duration: 01:34:58
- Date: November 13, 2017 at 3:10 PM
- Views: 140
- Tags: seminar, Geometry/topology Seminar
0 Comments