Javascript must be enabled

Jeffrey Giansiracusa : Equations of tropical varieties



Tropical geometry is a combinatorial shadow of algebraic geometry over a nonarchimedean field that encodes information about things like intersections and enumerative invariants. Usually one defines tropical varieties as certain polyhedral subsets of R^n satisfying a balancing condition. I'll show how these arise as the solution sets to certain systems of polynomial equations over the tropical semiring T = (R union -infinity, max, +) related to matroids. This yields a notion of tropical Hilbert polynomials, and in this framework there is a universal tropicalization that is closely related to the Berkovich analytification and the moduli space of valuations.

Please select playlist name from following

Report Video

Please select the category that most closely reflects your concern about the video, so that we can review it and determine whether it violates our Community Guidelines or isn’t appropriate for all viewers. Abusing this feature is also a violation of the Community Guidelines, so don’t do it.


Comments Disabled For This Video