Javascript must be enabled

Daniel Stern : Spectral shape optimization and new behaviors for free boundary minimal surfaces



Though the study of isoperimetric problems for Laplacian eigenvalues dates back to the 19th century, the subject has undergone a renaissance in recent decades, due in part to the discovery of connections with harmonic maps and minimal surfaces. By the combined work of several authors, we now know that unit-area metrics maximizing the first nonzero Laplace eigenvalue exist on any closed surface, and are realized by minimal surfaces in spheres. At the same time, work of Fraser-Schoen, Matthiesen-Petrides and others yields analogous results for the first eigenvalue of the Dirichlet-to-Neumann map on surfaces with boundary, with maximizing metrics induced by free boundary minimal immersions into Euclidean balls. In this talk, I'll describe a series of recent results characterizing the (perhaps surprising) asymptotic behavior of these free boundary minimal immersions (and associated Steklov-maximizing metrics) as the number of boundary components becomes large. (Based on joint work with Mikhail Karpukhin.)

Please select playlist name from following

Report Video

Please select the category that most closely reflects your concern about the video, so that we can review it and determine whether it violates our Community Guidelines or isn’t appropriate for all viewers. Abusing this feature is also a violation of the Community Guidelines, so don’t do it.


Comments Disabled For This Video