Quicklists
Javascript must be enabled

Linfeng Zhang : Neural network models and concurrent learning schemes for multi-scale molecular modelling

root

184 Views

We will discuss two issues in the context of applying deep learning methods to multi-scale molecular modelling: 1) how to construct symmetry-preserving neural network models for scalar and tensorial quantities; 2) how to efficiently explore the relevant configuration space and generate a minimal set of training data. We show that by properly addressing these two issues, one can systematically develop deep learning-based models for electronic properties and interatomic and coarse-grained potentials, which greatly boost the ability of ab-initio molecular dynamics; one can also develop enhanced sampling techniques that are capable of using tens or even hundreds of collective variables to drive phase transition and accelerate structure search

Please select playlist name from following

Report Video

Please select the category that most closely reflects your concern about the video, so that we can review it and determine whether it violates our Community Guidelines or isn’t appropriate for all viewers. Abusing this feature is also a violation of the Community Guidelines, so don’t do it.

0 Comments

Comments Disabled For This Video