Quicklists
Javascript must be enabled

Chris O'Neill : Matroids, and How to Make Your Proofs Multitask (Nov 4, 2011 4:25 PM)

What do vector arrangements, discrete graphs, and perfect matchings have in common? These seemingly unrelated objects (and many others) have a very similar underlying structure, known as a matroid. As a result, studying matroids allows you to simultaneously study many different objects from all over mathematics. In addition, many properties and constructions from these various objects, such as loops, duals, bases, cycles, rank, polynomial invariants, and minors (subgraphs), generalize naturally to matroids. In this talk, we will give a general definition of a matroid, and motivate their study by examining some of these constructions in detail. The only prerequisite for this talk is basic linear algebra.

Please select playlist name from following

Report Video

Please select the category that most closely reflects your concern about the video, so that we can review it and determine whether it violates our Community Guidelines or isn’t appropriate for all viewers. Abusing this feature is also a violation of the Community Guidelines, so don’t do it.

0 Comments

Comments Disabled For This Video