Javascript must be enabled

Chun-Hung Liu : Assouad-Nagata dimension of minor-closed metrics

Assouad-Nagata dimension addresses both large-scale and small-scale behaviors of metric spaces and is a refinement of Gromov’s asymptotic dimension. A metric space is a minor-closed metric if it is defined by the distance function on the vertices of an edge-weighted graph that satisfies a fixed graph property preserved under vertex-deletion, edge-deletion, and edge-contraction. In this talk, we determine the Assouad-Nagata dimension of every minor-closed metric. It is a common generalization of known results about the asymptotic dimension of H-minor free unweighted graphs, about the Assouad-Nagata dimension of complete Riemannian surfaces with finite Euler genus, and about their corollaries on weak diameter coloring of minor-closed families of graphs and asymptotic dimension of minor-excluded groups.

Please select playlist name from following

Report Video

Please select the category that most closely reflects your concern about the video, so that we can review it and determine whether it violates our Community Guidelines or isn’t appropriate for all viewers. Abusing this feature is also a violation of the Community Guidelines, so don’t do it.


Comments Disabled For This Video