Quicklists
Javascript must be enabled

Simon Brendle : Minimal Lagrangian diffeomorphisms between domains in the hyperbolic plane

Let $\Omega$ and $\tilde{\Omega}$ be domains in the hyperbolic plane with smooth boundary. Assume that both domains are uniformly convex, and have the same area. We show that there exists an area-preserving, orientation-preserving diffeomorphism $f: \Omega \to \tilde{\Omega}$ such that the graph of $f$ is a minimal surface in $\mathbb{H}^2 \times \mathbb{H}^2$. Moreover, we show that the set of all such diffeomorphisms is parametrized by the circle.

Please select playlist name from following

Report Video

Please select the category that most closely reflects your concern about the video, so that we can review it and determine whether it violates our Community Guidelines or isn’t appropriate for all viewers. Abusing this feature is also a violation of the Community Guidelines, so don’t do it.

0 Comments

Comments Disabled For This Video