Quicklists
Javascript must be enabled

Sam Mundy : Vanishing of Selmer groups for Siegel modular forms (Nov 13, 2024 3:10 PM)

Let π be a cuspidal automorphic representation of Sp_2n over Q which is holomorphic discrete series at infinity, and χ a Dirichlet character. Then one can attach to π an orthogonal p-adic Galois representation ρ of dimension 2n+1. Assume ρ is irreducible, that π is ordinary at p, and that p does not divide the conductor of χ. I will describe work in progress which aims to prove that the Bloch--Kato Selmer group attached to the twist of ρ by χ vanishes, under some mild ramification assumptions on π; this is what is predicted by the Bloch--Kato conjectures. The proof uses "ramified Eisenstein congruences" by constructing p-adic families of Siegel cusp forms degenerating to Klingen Eisenstein series of nonclassical weight, and using these families to construct ramified Galois cohomology classes for the Tate dual of the twist of ρ by χ.

Please select playlist name from following

Report Video

Please select the category that most closely reflects your concern about the video, so that we can review it and determine whether it violates our Community Guidelines or isn’t appropriate for all viewers. Abusing this feature is also a violation of the Community Guidelines, so don’t do it.

0 Comments

Comments Disabled For This Video