Quicklists
Javascript must be enabled

Erik Bates : The Busemann process of (1+1)-dimensional directed polymers

Directed polymers are a statistical mechanics model for random growth. Their partition functions are solutions to a discrete stochastic heat equation. This talk will discuss the logarithmic derivatives of the partition functions, which are solutions to a discrete stochastic Burgers equation. Of interest is the success or failure of the “one force-one solution principle” for this equation. I will reframe this question in the language of polymers, and share some surprising results that follow. Based on joint work with Louis Fan and Timo Seppäläinen.

Please select playlist name from following

Report Video

Please select the category that most closely reflects your concern about the video, so that we can review it and determine whether it violates our Community Guidelines or isn’t appropriate for all viewers. Abusing this feature is also a violation of the Community Guidelines, so don’t do it.

0 Comments

Comments Disabled For This Video