Quicklists
Javascript must be enabled

Eric Foxall : Social contact processes and the partner model.

We consider a model of infection spread on the complete graph on N vertices. Edges are dynamic, modelling the formation and breakup of non-permanent monogamous partnerships, and the infection can spread only along active edges. We identify a basic reproduction number \(R_0\) such that the infection dies off in \(O(\log N)\) time when \(R_0\)<1, and survives for at least \(e^{cN}\) time when \(R_0\)>1 and a positive fraction of vertices are initially infectious. We also identify a unique endemic state that exists when \(R_0\)>1, and show it is metastable. When \(R_0\)=1, with considerably more effort we can show the infection survives on the order of \(N^{1/2}\) amount of time.

Please select playlist name from following

Report Video

Please select the category that most closely reflects your concern about the video, so that we can review it and determine whether it violates our Community Guidelines or isn’t appropriate for all viewers. Abusing this feature is also a violation of the Community Guidelines, so don’t do it.

0 Comments

Comments Disabled For This Video