Quicklists
Javascript must be enabled

Bill Allard : The Boundary Finder (Oct 17, 2008 4:25 PM)

(This abstract is in TeX source code. Sorry!) Fix a small positive number $h$. Let $$G=h\mathbb{Z}^2=\{(ih,jh):i,j\in\mathbb{Z}\};$$ thus $G$ is a rectangular grid of points in $\mathbb{R}^2$. Let $\Omega$ be an bounded open subset of $\mathbb{R}^2$ with $C^1$ boundary and let $E=\{x\in G:x\in\Omega\}$. {\bf Question One.} Given $E$ can one determine the length of $\partial\Omega$ to within $O(h)$? The answer to this question is ``yes'', provided $\Omega$ satisfies a certain natural ``thickness'' condition; without this additional assumption the answer may be ``no''. {\bf Question Two.} Is there a fast algorithm for determining the length of $\partial\Omega$. The answer to this question also ``yes''. In this talk I will describe the proof that the answer to Question One is ``yes'' and I will describe the fast algorithm whose existence is implied in the answer to Question Two. If time permits, I will describe some applications.

Please select playlist name from following

Report Video

Please select the category that most closely reflects your concern about the video, so that we can review it and determine whether it violates our Community Guidelines or isn’t appropriate for all viewers. Abusing this feature is also a violation of the Community Guidelines, so don’t do it.

0 Comments

Comments Disabled For This Video