Javascript must be enabled

Chenglong Yu : Moduli of symmetric cubic fourfolds and nodal sextic curves

Period map is a powerful tool to study geometric objects related to K3 surfaces and cubic 4-folds. In this talk, we focus on moduli of cubic 4-folds and sextic curves with specified symmetries and singularities. We identify the geometric (GIT) compactifications with the Hodge theoretic (Looijenga, mostly Baily-Borel) compactifications of locally symmetric varieties. As a corollary, the algebra of GIT invariants is identified with the algebra of automorphic forms on the corresponding period domains. One of the key inputs is the functorial property of semi-toric compactifications of locally symmetric varieties. Our work generalizes results of Matsumoto-Sasaki-Yoshida, Allcock-Carlson-Toledo, Looijenga-Swierstra and Laza-Pearlstein-Zhang. This is joint work with Zhiwei Zheng.

Please select playlist name from following

Report Video

Please select the category that most closely reflects your concern about the video, so that we can review it and determine whether it violates our Community Guidelines or isn’t appropriate for all viewers. Abusing this feature is also a violation of the Community Guidelines, so don’t do it.


Comments Disabled For This Video