Quicklists
Javascript must be enabled

Mariana Olvera-Cravioto : Opinion dynamics on complex networks: From mean-field limits to sparse approximations

In a world of polarized opinions on many cultural issues, we propose a model for the evolution of opinions on a large complex network. Our model is akin to the popular Friedkin-Johnsen model, with the added complexity of vertex-dependent media signals and confirmation bias, both of which help explain some of the most important factors leading to polarization. The analysis of the model is done on a directed random graph, capable of replicating highly inhomogeneous real-world networks with various degrees of assortativity and community structure. Our main results give the stationary distribution of opinions on the network, including explicitly computable formulas for the conditional means and variances for the various communities. Our results span the entire range of inhomogeneous random graphs, from the sparse regime, where the expected degrees are bounded, all the way to the dense regime, where a graph having n vertices has order n^2 edges.

Please select playlist name from following

Report Video

Please select the category that most closely reflects your concern about the video, so that we can review it and determine whether it violates our Community Guidelines or isn’t appropriate for all viewers. Abusing this feature is also a violation of the Community Guidelines, so don’t do it.

0 Comments

Comments Disabled For This Video