Quicklists
Javascript must be enabled

Joe Kileel : Inverse Problems, Imaging, and Tensor Decomposition

root

321 Views

Perspectives from computational algebra and numerical optimization are brought to bear on a scientific application and a data science application. In the first part of the talk, I will discuss cryo-electron microscopy (cryo-EM), an imaging technique to determine the 3-D shape of macromolecules from many noisy 2-D projections, recognized by the 2017 Chemistry Nobel Prize. Mathematically, cryo-EM presents a particularly rich inverse problem, with unknown orientations, extreme noise, big data and conformational heterogeneity. In particular, this motivates a general framework for statistical estimation under compact group actions, connecting information theory and group invariant theory. In the second part of the talk, I will discuss tensor rank decomposition, a higher-order variant of PCA broadly applicable in data science. A fast algorithm is introduced and analyzed, combining ideas of Sylvester and the power method.

Please select playlist name from following

Report Video

Please select the category that most closely reflects your concern about the video, so that we can review it and determine whether it violates our Community Guidelines or isn’t appropriate for all viewers. Abusing this feature is also a violation of the Community Guidelines, so don’t do it.

0 Comments

Comments Disabled For This Video