Quicklists
Javascript must be enabled

Jo Nelson : Contact Invariants and Reeb Dynamics

Contact geometry is the study of certain geometric structures on odd dimensional smooth manifolds. A contact structure is a hyperplane field specified by a one form which satisfies a maximum nondegeneracy condition called complete non-integrability. The associated one form is called a contact form and uniquely determines a vector field called the Reeb vector field on the manifold. I will explain how to make use of J-holomorphic curves to obtain a Floer theoretic contact invariant whose chain complex is generated by closed Reeb orbits. In particular, I will explain the pitfalls in defining contact homology and discuss my work which gives a rigorous construction of cylindrical contact homology via geometric methods. This talk will feature numerous graphics to acclimate people to the realm of contact geometry.

Please select playlist name from following

Report Video

Please select the category that most closely reflects your concern about the video, so that we can review it and determine whether it violates our Community Guidelines or isn’t appropriate for all viewers. Abusing this feature is also a violation of the Community Guidelines, so don’t do it.

0 Comments

Comments Disabled For This Video