Quicklists
Javascript must be enabled

Manoj Gopalkrishnan : On catalysis in biochemical networks

It is a common expectation in chemistry that a chemical transformation which takes place in the presence of a catalyst must also take place in its absence, though perhaps at a much slower rate. A reaction network will be called ``saturated'' if it satisfies such an expectation. I propose a mathematical definition for saturated networks and show that the associated dynamical systems have no boundary equilibria in positive stoichiometric classes, and are therefore permanent. This result is independent of the specific rates, and generalizes previous results for complete networks by Gnacadja, atomic event-systems by Adleman et al. and constructive networks by Shinar et al. I require no assumption of complex balance or deficiency restrictions. The question of permanence for weakly-reversible reaction networks remains a long-standing open problem.

Please select playlist name from following

Report Video

Please select the category that most closely reflects your concern about the video, so that we can review it and determine whether it violates our Community Guidelines or isn’t appropriate for all viewers. Abusing this feature is also a violation of the Community Guidelines, so don’t do it.

0 Comments

Comments Disabled For This Video