Santosh Vempala : Logconcave Random Graphs
We propose the following model of a random graph on $n$ vertices. Let F be a distribution in R_+^{n(n-1)/2} with a coordinate for every pair ij with 1 \le i,j \le n. Then G_{F,p} is the distribution on graphs with n vertices obtained by picking a random point X from F and defining a graph on n vertices whose edges are pairs ij for which X_{ij} \le p. The standard Erd\H{o}s-R\'{e}nyi model is the special case when F is uniform on the 0-1 unit cube. We determine basic properties such as the connectivity threshold for quite general distributions. We also consider cases where the X_{ij} are the edge weights in some random instance of a combinatorial optimization problem. By choosing suitable distributions, we can capture random graphs with interesting properties such as triangle-free random graphs and weighted random graphs with bounded total weight. This is joint work with Alan Frieze (CMU) and Juan Vera (Waterloo). The talk will be self-contained and no prior knowledge of random graphs is assumed.
- Category: Probability
- Duration: 01:14:45
- Date: March 28, 2008 at 1:25 PM
- Views: 157
- Tags: seminar, Probability Seminar
0 Comments